

Appendix B contains discussions of analytical procedures used in our engineering analyses. Appendix C contains a positioning report by Fugro Chance, Inc., of Lafayette, Louisiana.

For the purposes of discussion and presentation, "driven pipe pile" is used in this report to represent foundation piles, caissons and conductors, unless otherwise specified.

2.2 FIELD AND LABORATORY INVESTIGATIONS

The field investigation was performed on June 26 through 28, 2008, from the R/V Seaprobe. The soil conditions were determined by performing four exploratory borings, two at each SPM location with one boring at a selected anchor leg location, and one boring at the proposed PLET location. Enterprise Field Services selected the boring locations. These borings were drilled to a penetration of 131-ft below mudline. The water depths at the boring locations ranged from 110 to 113 ft. A chronological summary of field operations is presented in Appendix A.

2.2.1 Exploratory Borings

FMMG personnel drilled the soil borings with a DMX drill rig positioned over the centerwell of the R/V Seaprobe. The vessel was anchored at the boring location by a 4-point mooring system. Soil conditions at the site were explored by drilling a group of four soil borings to 131-ft penetration below the seafloor. The final coordinates for the boring locations are presented in Table 2-1. A plan of borings within Block A-36, of the Galveston Area is presented on Plate 2-1. Fugro Chance, Inc., of Lafayette, Louisiana, conducted surveying utilizing STARFIX and DGPS, and performed a 360-degree scanning sonar survey. The positioning report, prepared by Fugro Chance, is presented in Appendix C. The scanning sonar reports are available from Fugro Chance upon request.

Table 2-1: Final Boring Coordinates (Texas South Central Zone Coordinates)

FMMG Boring Designation	Fugro Chance Boring Designation	Proposed Boring Coordinates	Final Boring Coordinates	Boring Termination Depth (ft)
SPM #1 PLET	Core 3	X = 3,276,605.26 ft Y = 265,296.65 ft	X = 3,276,615 ft Y = 265,270 ft	131
SPM #1 Anchor Leg #2	Core 1	X = 3,275,201.70 ft Y = 264,859.70 ft	X = 3,275,180 ft Y = 264,853 ft	131
SPM #2 PLET	Core 4	X = 3,283,609.94 ft Y = 269,139.12 ft	X = 3,283,617 ft Y = 269,118 ft	131
SPM #2 Anchor Leg #6	Core 2	X = 3,284,713.02 ft Y = 270,110.77 ft	X = 3,284,733 ft Y = 270,117 ft	131

Samples were obtained through 5.0-in.-OD, 4.5-in.-IF drill pipe at all the locations. Samples were spaced at 3-ft intervals to 20-ft penetration, at 5-ft intervals to 68-ft penetration, and at 10-ft intervals thereafter to the final boring depth at all the locations, except at the SPM #2 PLET location. Sampling intervals at the SPM #2 PLET location was completed as follows: 3-ft intervals to 23-ft penetration, 5-ft intervals to 71-ft penetration, and 10-ft intervals thereafter to the final boring depth. Additionally, a 5-ft

shallow boring, designated as Core 4A by Fugro Chance, was drilled at the SPM #2 PLET location to allow re-sampling. The drilling and sampling techniques used to complete these borings are explained in detail in Appendix A.

Two water depths were measured at each boring location using a seafloor sensor seated in the drill bit. The water depth measurements are tabulated in Table 2-2. These water depth measurements are intended for the purpose of the geotechnical investigation only, and are not corrected for tidal or other variations. If utilized for other purposes, the water depth measurement should be adjusted to account for meteorological tide and datum corrections. The water depth measuring procedures are explained in detail in Appendix A.

Boring Designation	Water Depth (ft)	Time and Date of Measurement	Supplemental Water Depth (ft)	Time and Date of Measurement
SPM #1 PLET	112	1630 hours on June 27, 2008	113	2245 hours on June 27, 2008
SPM #1 ANCHOR LEG #2	113	2400 hours on June 26, 2008	113	0605 hours on June 27, 2008
SPM #2 PLET	112	0250 hours on June 28, 2008	112	1030 hours on June 28, 2008
SPM #2 ANCHOR LEG #6	110	1450 hours on June 28, 2008	111	2105 hours on June 28, 2008

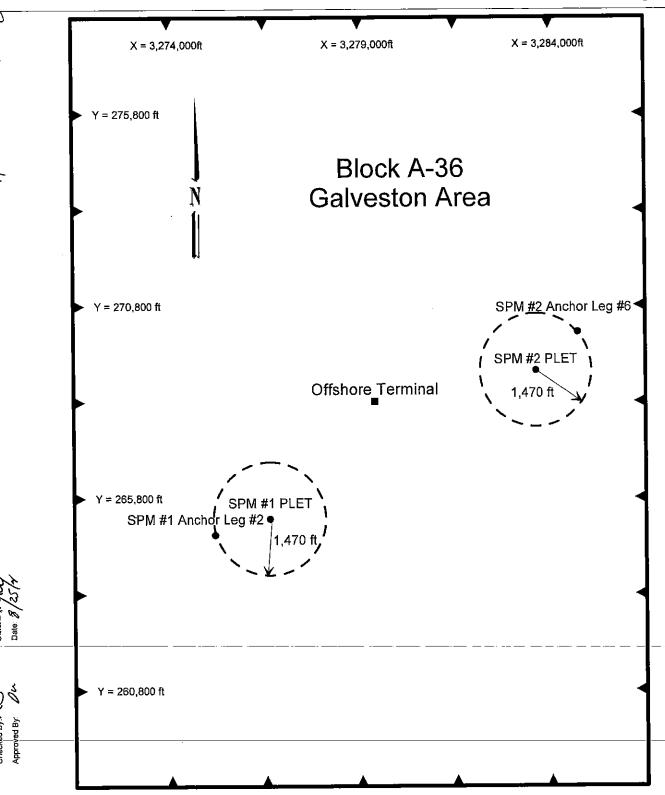
Table 2-2: Measured Water Depths

2.2.2 Field and Laboratory Tests

The soil testing program was designed to evaluate pertinent index and engineering properties of the foundation soils. During the field operation, all samples were extruded from the sampler and classified by the soil technician or field engineer. Unit weight, Torvane, pocket penetrometer, miniature vane and unconsolidated-undrained triaxial compression tests were performed in the field on selected cohesive samples. All of the samples were shipped to Fugro's Houston laboratory where Atterberg limit tests, water content tests, and grain-size analyses, as well as additional density tests, unconsolidated-undrained triaxial compression tests, and miniature vane tests, were performed.

A description of relevant laboratory procedures is provided in Appendix A. The strength and classification test results are presented graphically on the Logs of Boring and Test Results in Section 3. Grain-size distribution curves from sieve-analyses and stress-strain curves from triaxial compression tests are presented in Appendix A.

2.3 GENERAL SOIL CONDITIONS


2.3.1 Soil Stratigraphy

The soil stratigraphy at each of the boring locations disclosed by the field and laboratory investigation is presented in Section 3. The soil stratigraphy is based on the classification of soil samples

2-3

Projection: Texas South Central Zone Coordinates

PLAN OF BORINGS

Texas Offshore Port System, Offshore Terminal Location Block A-36, Galveston Area

TERMS AND SYMBOLS USED ON BORING LOG

SAMPLER TYPES SOIL TYPES AA†Debris Sand ু Gravel In Situ Thin-Test Walled Tube Silty Sand Sandy Silt Peat or Highly Organic জু Shell Rock Piston Core Recovery **SOIL GRAIN SIZE** U.S. STANDARD SIEVE 200 SAND GRAVEL SILT BOULDERS COBBLES COARSE MEDIUM COARSE **FINE** 0.002 2.00 0.420 0.074 SOIL GRAIN SIZE IN MILLIMETERS

STRENGTH OF COHESIVE SOILS(1)

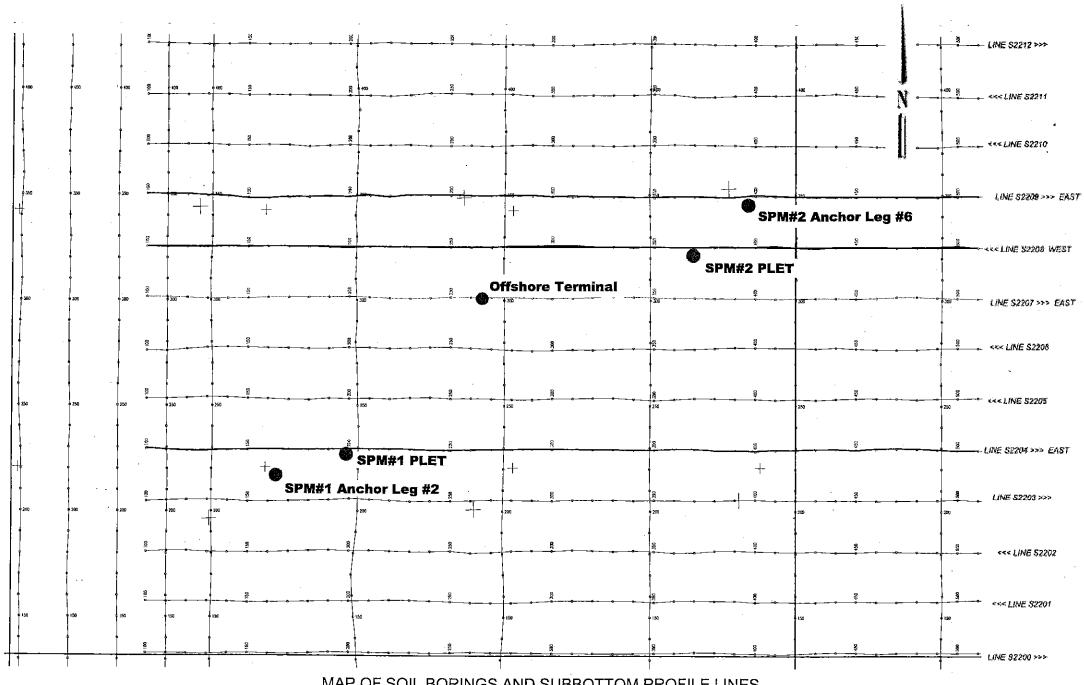
DENSITY OF GRANULAR SOILS(2,3)

Consistency	Undrained Shear Strength, Kips Per Sq Ft	Descriptive <u>Term</u>	*Relative Density, %_
Very Soft	less than 0.25	Very Loose	less than 15
Soft	0.25 to 0.50	Loose	15 to 35
Firm	0.50 to 1.00	Medium Dense	35 to 65
Stiff	1.00 to 2.00	Dense	65 to 85
Verv Stiff	2.00 to 4.00	Very Dense9	reater than 85
•	greater than 4.00	*Estimated from sampler driving reco	ord

SOIL STRUCTURE(1)

	SOIL STRUCTURE
Slickensided	Having planes of weakness that appear slick and glossy. The degree of slickensidedness depends upon the spacing of slickensides and the ease of breaking along these planes.
Fissured	Containing shrinkage or relief cracks, often filled with fine sand or silt, usually more or less vertical.
Pocket	Inclusion of material of different texture that is smaller than the diameter of the sample.
 Parting	Inclusion less than 1/8 inch thick extending through the sample.
Seam	Inclusion 1/8 inch to 3 inches thick extending through the sample.
Layer	Inclusion greater than 3 inches thick extending through the sample.
Laminated	Soil sample composed of alternating partings or seams of different soil types.
Interlayered	Soil sample composed of alternating layers of different soil types.
Intermixed	Soil sample composed of pockets of different soil types and layered or laminated structure is not evident.
Calcareous	Having appreciable quantities of carbonate.

REFERENCES:


- (1) ASTM D 2488
- (2) ASCE Manual 56 (1976)
- (3) ASTM D 2049

Information on each boring log is a compilation of subsurface conditions and soil or rock classifications obtained from the field as well as from laboratory testing of samples. Strata have been interpreted by commonly accepted procedures. The stratum lines on the log may be transitional and approximate in nature. Water level measurements refer only to those observed at the times and places indicated in the text, and may vary with time, geologic condition or construction activity.

. (}

Report No. 0201-6501

PLATE 2-2

MAP OF SOIL BORINGS AND SUBBOTTOM PROFILE LINES

Texas Offshore Port System Block A-36, Galveston Area

3 SITE SPECIFIC SOIL AND PILE DESIGN INFORMATION

3.1 SPM #1 PLET LOCATION

3.1.1 Introduction

The field investigation at the location designated as SPM #1 PLET was performed on June 27 and 28, 2008. Soil sampling was performed to 131-ft penetration at Texas South Central Zone Coordinates X = 3,276,615 ft and Y = 265,270 ft. The measured water depth ranged from 112 to 113 ft.

3.1.2 Soil Stratigraphy

The soil stratigraphy disclosed by the field and laboratory investigations is presented on the boring log, Plate 3-1. The soil stratigraphy is based on the classification of soil samples recovered from the boring and observations made during drilling operations. A generalized summary of the major soil strata is tabulated below.

	Penetrat	io <u>n, ft</u>	
<u>Stratum</u>	From	<u>To</u>	<u>Description</u>
Ī	0	5	Very soft lean clay
İl	5	28	Loose to medium dense sandy silt to silt with sand
111	28	43	Firm lean clay
īV	43	56	Medium dense silt to silty fine sand
V	- 56	131	Firm to very stiff clay

Detailed soil descriptions that include textural variations and inclusions are noted on the boring log. A key to the terms and symbols used on the boring log is presented on Plate 2-2. The Roman numeral representing each stratum is also shown on the boring log and on relevant plates. The variation in soil stratigraphy across this site is indicated in a comparison (integration) of the geophysical and geotechnical soil information presented on Plate 3-2.

3.1.2.1 Interpretation of Soil Properties

The shear strength and submerged unit weight profiles shown on Plates 3-3 and 3-4, respectively, best represent the assembled test results plotted on the boring log. These profiles were used in the engineering analyses.

3.1.3 Pile Design Information

The pile design information developed for this study includes ultimate axial capacities, axial loadpile movement data, and lateral soil resistance-pile deflection (p-y) characteristics. The analytical methods used to develop this information are presented briefly in Section 2.5 and in more detail in Appendix B.

3.1.3.1 Axial Pile Design

Ultimate Axial Capacity. The unit skin friction and unit end bearing values plotted on Plates 3-5 and 3-6, respectively were calculated using the API RP 2A methods described in Appendix B. These values were used to calculate the ultimate axial compressive and tensile capacities for 24-in.-diameter pipe piles,

driven to final penetration at the boring location. Axial capacity curves for driven pipe piles (conductors, caissons, anchor and foundation piles) are presented on Plate 3-7.

API RP 2A recommends that pile penetrations be selected using appropriate factors of safety or pile resistance factors. These factors are discussed in Section 2.5.1 of this report.

Axial Load Transfer Data. Axial load-pile movement analyses are usually performed using a computer solution based on methods developed by Reese (1964) or Matlock, et al. (1976). Plates 3-8 and 3-9 presents the results as side load-side movement (t-z) and tip load-tip movement (Q-z) data for 24-in-diameter driven pipe piles, respectively. The presented Q-z data should be used for foundation piles and neglected for caissons and conductor design. In developing the axial load transfer data in the cohesive soils, a post-peak adhesion ratio of 0.90 was utilized.

3.1.3.2 Lateral Pile Design Data

The soil resistance-pile deflection (p-y) characteristics of the soils at the boring location were developed for individual 24-in.-diameter driven pipe piles. These data may be used in lateral load analyses of driven piles, conductors and caissons. The p-y data for cyclic loading were developed to 100-ft penetration using procedures that have been outlined in API RP 2A and briefly explained in Appendix B. The stratigraphy and parameters used to develop the p-y data are presented on Plate 3-10. The p-y data for 24-in.-diameter driven pipe piles are presented on Plate 3-11. P-y values presented at 100-ft penetration may be used for lateral load analyses at greater depths.

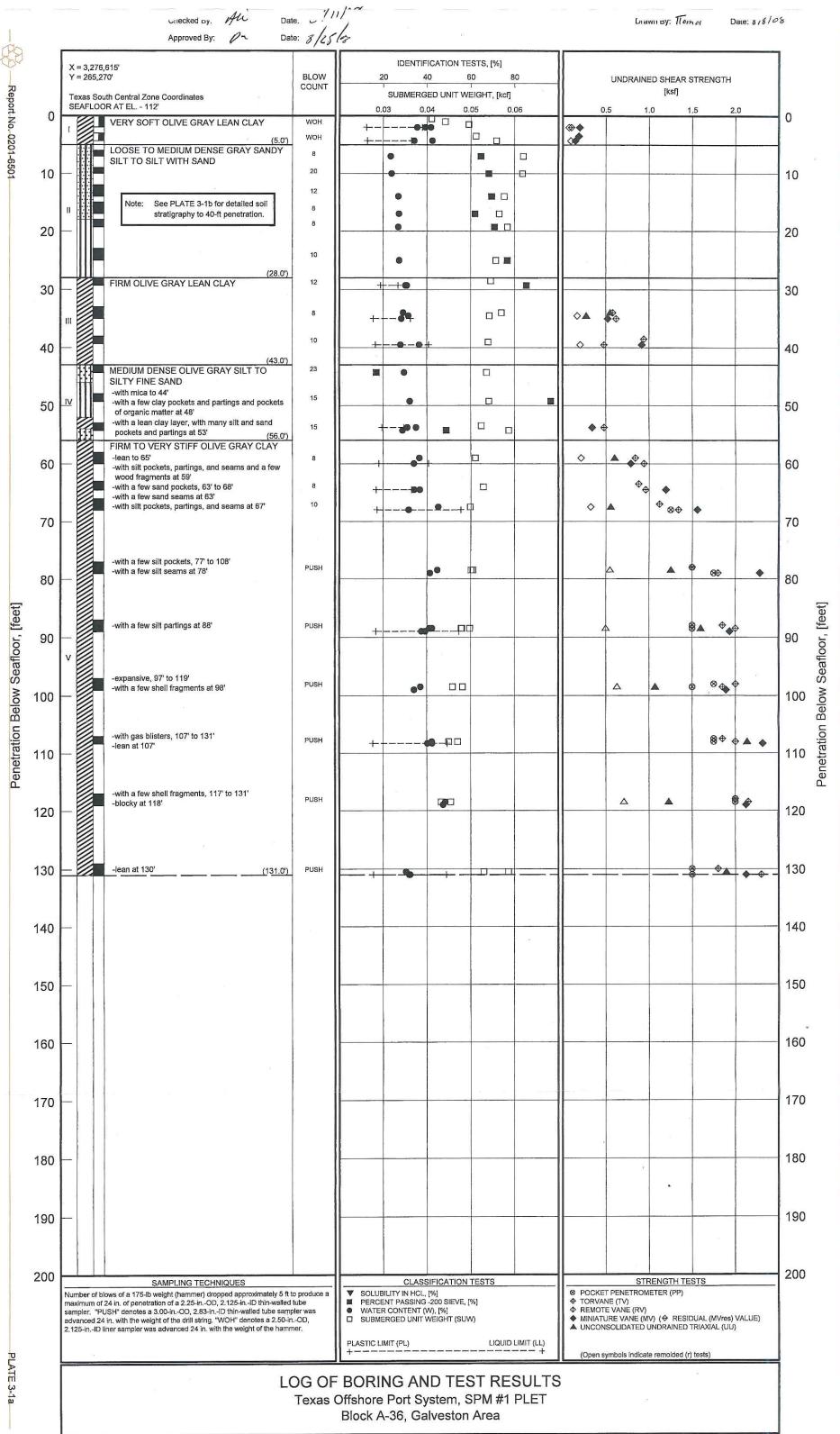
3.1.4 Seafloor Bearing Capacity

Ultimate bearing capacity equations for the near-surface soils were taken from a design method developed by Skempton (1951) based on undisturbed shear strength. The following equations can be used to determine the ultimate bearing capacity for horizontal tubular members and mud mats resting on the seafloor:

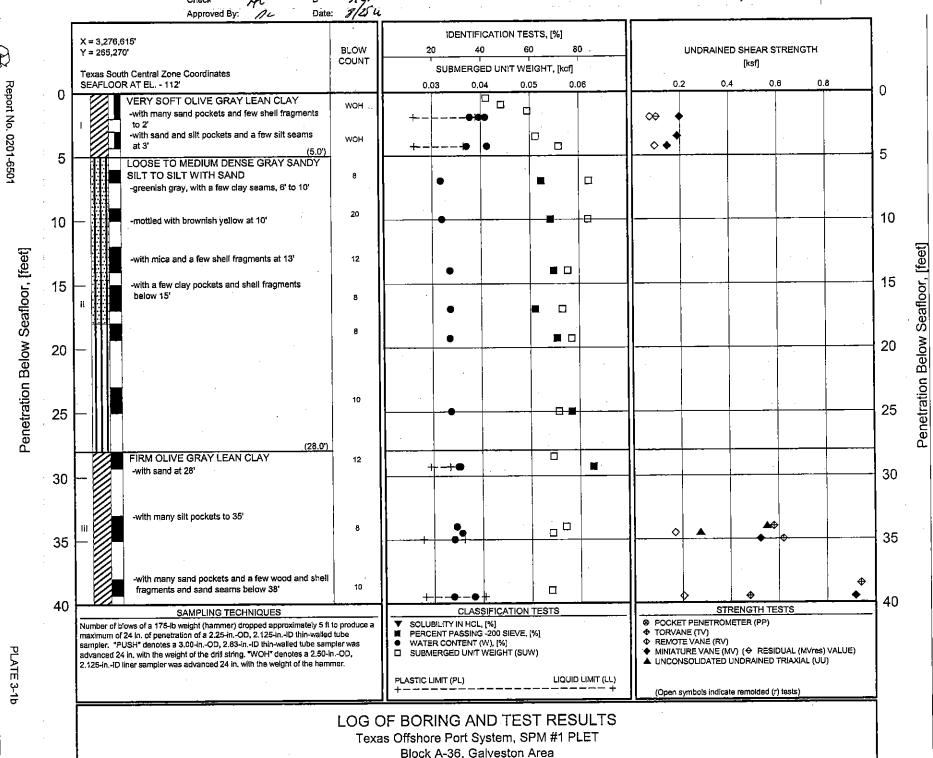
 $q_u = 1000$ for tubular members and

 $q_{11} = (1000)(1 + 0.2 B/L)$ for mud mats for B \leq 50 ft

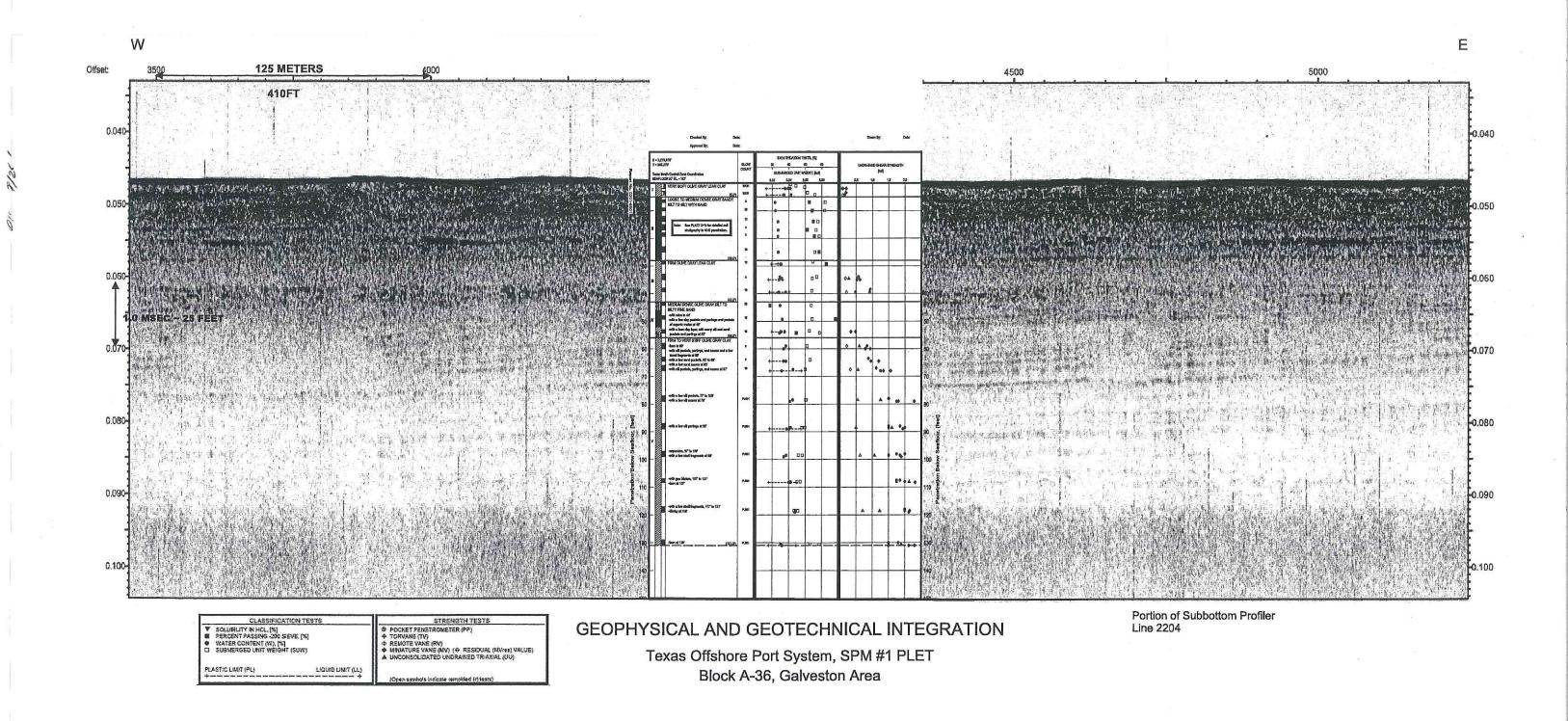
where: qu = ultimate bearing capacity, psf;


B = width of mud mat, ft; and

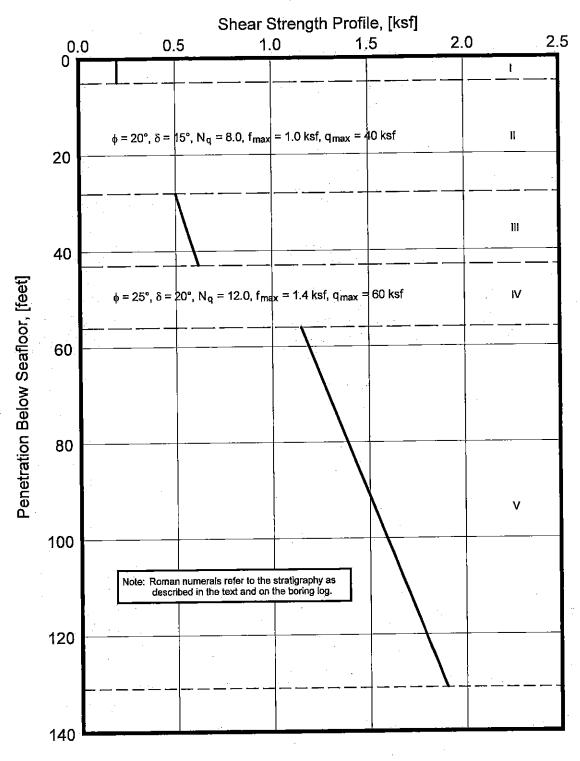
L = length of mud mat, ft.

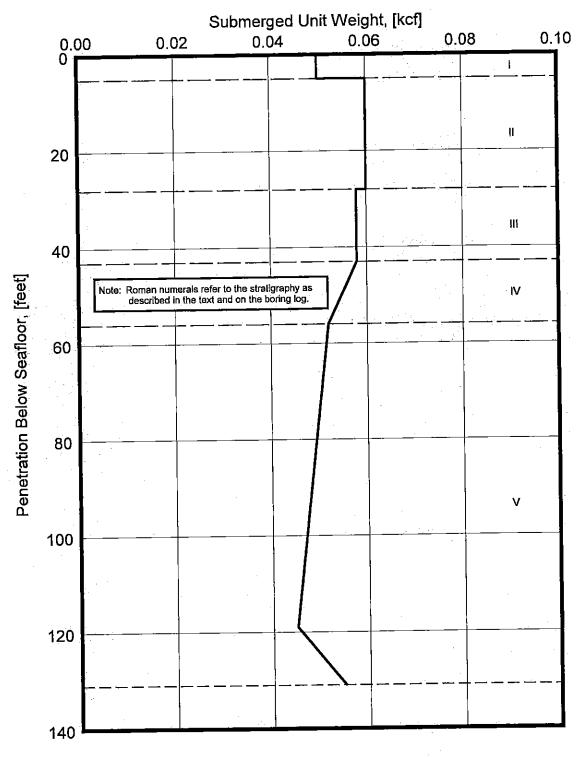

For horizontal tubular members penetrating less than one radius, the projected area at the mudline should be used to calculate the ultimate bearing capacity of the members. For members penetrating one radius or more, the diameter should be used. For triangular-shaped mud mats, B should be taken as 75 percent of the least altitude and L should be taken as the longest side.

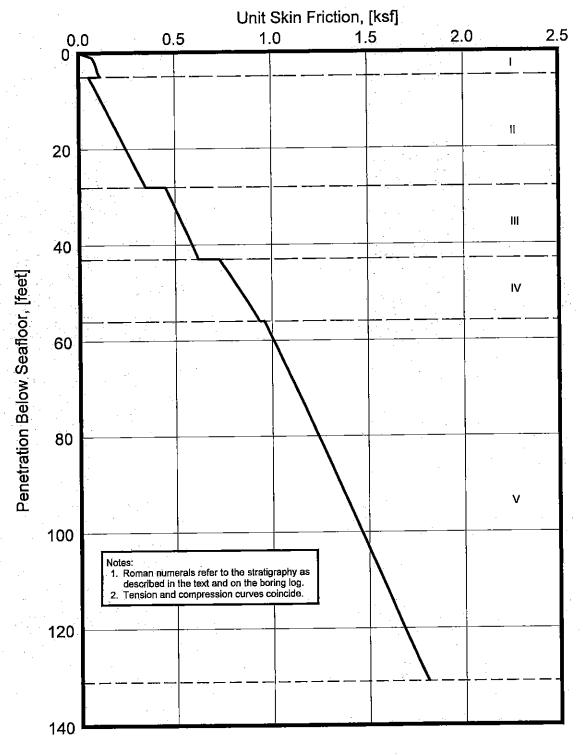
API RP 2A recommends that appropriate factors of safety be applied to the capacity values. These factors are discussed in Section 2.6.1 of this report.



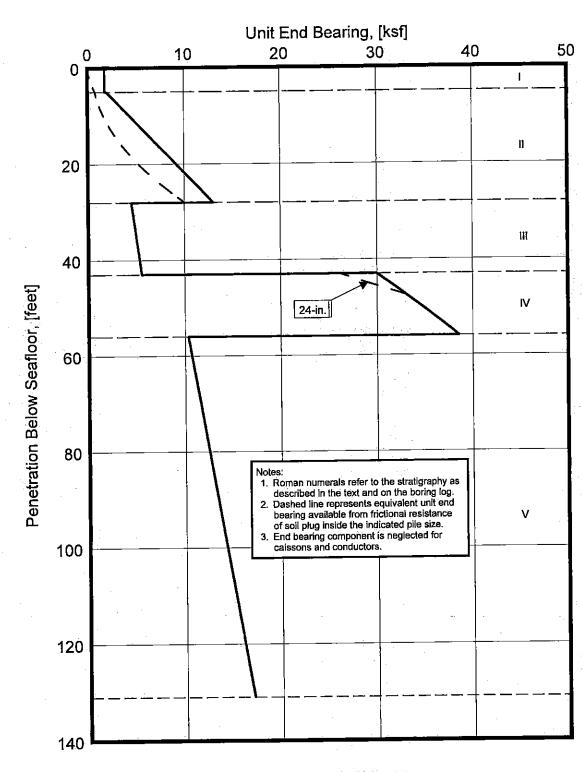
WGRO >>>

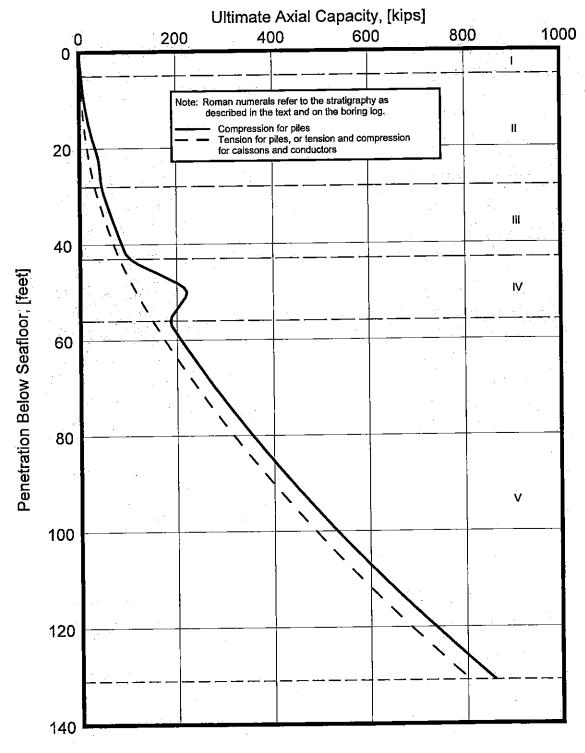






DESIGN STRENGTH PARAMETERS


DESIGN SUBMERGED UNIT WEIGHT


UNIT SKIN FRICTION API RP 2A (2000) Method

UNIT END BEARING API RP 2A (2000) Method

ULTIMATE AXIAL CAPACITY

API RP 2A (2000) Method 24-in.-Diameter Driven Pipe Piles Texas Offshore Port System, SPM #1 PLET Block A-36, Galveston Area

PENETRATION BELOW MUDLINE		· · · · · · · · · · · · · · · · · · ·			CURVE PO	INTS			
(feet)		1	2	3	4	5	6	7	88
0.0	t	0.00	0.00 0.04	0.00 0.07	0.00 0.14	0.00 0.19	0.00 0.24	0.00 0.48	0.00 24.00
1.0	t z	0.00 0.00	0.02 0.04	0.04 0.07	0.05 0.14	0.06 0.19	0.07 0.24	0.06 0.48	0.06 24.00
4.0	t	0.00	0.03 0.04	0.05 0.07	0.07 0.14	0.09 0.19	0.10 0.24	0.09 0.48	0.09 24.00
5.0	t	0.00	0.03 0.04	0.06 0.07	0.08 0.14	0.10 0.19	0.11 0.24	0.10 0.48	0.10 24.00
5.0	t z	0.00 0.00	0.05 0.10	0.05 24.00					
28.0	t	0.00 0.00	0.35 0.10	0.35 24.00					
28.0	t	0.00	0.14 0.04	0.23 0.07	0.34 0.14	0.41 0.19	0.45 0.24	0.41 0.48	0.41 24.00
42.0	t	0.00	0.18 0.04	0.31 0.07	0.46 0.14	0.55 0.19	0.61 0.24	0.55 0.48	0.55 24.00
43.0	t	0.00 0.00	0.19 0.04	0.31 0.07	0.46 0.14	0.56 0.19	0.62 0.24	0.56 0.48	0.56 24.00
43.0	t z	0.00	0.73 0.10	0.73 24.00					·
56.0	t	0.00 0.00	0.94 0.10	0.94 24.00					·
56.0	t	0.00 0.00	0.29 0.04	0.48 0.07	0.72 0.14	0.87 0.19	0.96 0.24	0.87 0.48	0.87 24.00
88.0	t	0.00	0.40 0.04	0.67 0.07	1.00 0.14	1.20 0.19	1.33 0.24	1.20 0.48	1.20 24.00
119.0	t	0.00	0.50 0.04	0.84 0.07	1.25 0.14	1.50 0.19	1.67 0.24	1.50 0.48	1.50 24.00
131.0	t	0.00 0.00	0.54 0.04	0.90 0.07	1.35 0.14	1.63 0.19	1.81 0.24	1.63 0.48	1.63 24.00
		· 							
								- 	. ·

Notes: 1. "t" is mobilized soil-pile adhesion, [ksf].
2. "z" is axial pile displacement, [in.].
3. Data for tension and compression coincide.

AXIAL LOAD TRANSFER DATA

(T-Z DATA)

API RP 2A (2000) Method

24-in.-Diameter Driven Pipe Piles

Texas Offshore Port System, SPM #1 PLET

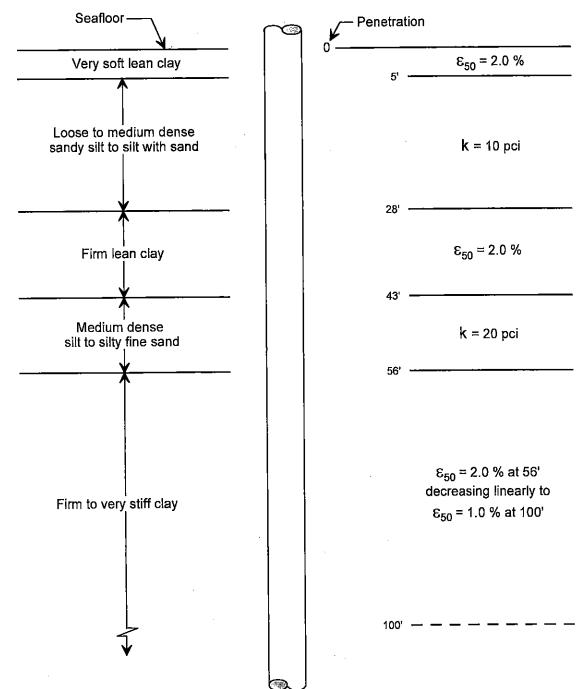
Block A-36, Galveston Area

PENETRATION BELOW				CL	IRVE POINTS			
MUDLINE (feet)		1	2	3	4	5	6	7
56.0	Qz	0 0.00	8 0.05	16 0.31	24 1.01	29 1.75	33 2.40	33 24.00
131.0	Q z	0.00	13 0.05	27 0.31	40 1.01	48 1.75	54 2.40	54 24.00
							÷	
]						
·					-			

Notes: 1. "Q" is mobilized end bearing capacity, [kips]. 2. "z" is axial tip displacement, [in.].

AXIAL LOAD TRANSFER DATA

(Q-Z DATA)


API RP 2A (2000) Method

24-in.-Diameter Driven Pipe Piles

Texas Offshore Port System, SPM #1 PLET

Block A-36, Galveston Area

- Notes:
- 1. \mathcal{E}_{50} is axial strain at half of peak deviator stress for cohesive soils.
- 2. Soil strength parameters are shown on Plate 3-3.
- 3. Submerged unit weight profile is shown on Plate 3-4.
- 4. k is the modulus of horizontal subgrade reaction for granular soils.

STRATIGRAPHY AND PARAMETERS FOR P-Y DATA

Texas Offshore Port System, SPM #1 PLET Block A-36, Galveston Area

Drawn by: W vare: 4 - O

PENETRATION BELOW MUDLINE		•			CURVE PO	INTS	-		
(feet)		1	2	3	4	5	6	7 .	8
0.0	p y	0 0.00	15 0.03	23 0.12	34 0.36	50 1.20	72 3.60	0 18.00	0 24.00
2.0	p y	0 0.00	20 0.03	31 0.12	45 0.36	67 1.20	96 3.60	16 18.00	16 24.00
5.0	p y	0 0.00	28 0.03	42 0.12	62 0.36	92 1.20	132 3.60	55 18.00	55 24.00
5.0	p y	0.00	39 0.07	64 0.12	85 0.17	107 0.26	123 0.39	128 0.57	129 24.00
7.0	p y	0 0.00	70 0.09	116 0.15	154 0.22	193 0.33	221 0.51	231 0.73	233 24.00
11.0	p y	0.00	157 0.12	261 0.22	345 0.31	434 0.47	496 0.72	517 1.05	522 24.00
15.0	p y	0.00	276 0.16	460 0.28	608 0.41	764 0.61	875 0.94	911 1.35	921 24.00
19.0	p y	0.00	422 0.19	703 0.34	928 0.49	1167 0.73	1336 1.13	1392 1.63	1406 24.00
28.0	p y	0.00	631 0.19	1051 0.34	1388 0.50	1745 0.74	1998 1.15	2082 1.66	2103 24.00
28.0	p y	0.00	113 0.03	173 0.12	255 0.36	375 1.20	540 3.60	540 24.00	
43.0	p y	0.00	140 0.03	214 0.12	316 0.36	465 1.20	670 3.60	670 24.00	
43.0	p y	0.00	1765 0.18	2941 0.31	3882 0.45	4882 0.68	5588 1.04	5823 1.51	5882 24.00
56.0	p y	0 0.00	2269 0.17	3782 0.31	4992 0.45	6278 0.67	7186 1.03	7488 1.49	7564 24.00
56.0	p y	0.00	259 0.03	397 0.12	587 0.36	863 1.20	1242 3.60	1242 24.00	
100.0 (and below)	p y	0 0.00	358 0.02	549 0.06	811 0.18	1192 0.60	1717 1.80	1717 24.00	·
	ŀ	i							
		i.							
	1						. <u> </u>	_	

Notes: 1. "p" is soil resistance, [lb/in.]. 2. "y" is lateral deflection, [in.].

P-Y DATA (CYCLIC LOADING)

API RP 2A (2000) Method

24-in.-Diameter Driven Pipe Piles Texas Offshore Port System, SPM #1 PLET

Block A-36, Galveston Area

4 CONCLUSIONS AND RECOMMENDATIONS

The TOPS geotechnical program was conducted to investigate soil conditions within the proposed SPM #1 and SPM #2 facilities located in Block A-36 of the Galveston Area in the Gulf of Mexico. The program consisted of four soil borings, field and laboratory testing, and engineering analyses. A summary of the pertinent conclusions and recommendations follows:

- Soil borings across the proposed facility locations indicate a significant degree of nearsurface soil variability. Soil conditions above 65-ft penetration show channel features within the block. These channel features vary both in depth and width across the block and resulted in variable soil stratigraphy and properties. FMMG recommends that a site-specific soil boring be completed at each of the anchor and PLET locations prior to design of the foundation elements.
- A scanning sonar survey was performed at each boring location and is available upon request from Fugro Chance.
- The water depth ranged from 110 ft to 113 ft across the boring locations within Block A-36 in the Galveston Area.
- Final engineering design data are presented for 24- and 42-in.-diameter driven pipe piles for the PLET and anchor locations, respectively.
- The safety and load resistance factors should be carefully reviewed based on API RP 2A guidelines and appropriately applied to the engineering analyses presented in this report.
- Pile group effects and pile interaction with spud can depressions should be evaluated when the geometry and location of these elements are determined.
- Mud mat bearing capacities at the PLET locations should be reviewed when the final size and configurations and proximity to spud can depressions are determined.
- Pile driving problems are not expected based on the soil information presented in this study but a drivability study could be performed to select an appropriate hammer-pile combination.

FMMG would be pleased to assist in re-evaluations and additional analyses.

5 REFERENCES

American Petroleum Institute (1993), <u>Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design</u>, API Recommended Practice 2A-LRFD (RP 2A-LRFD), 1st Ed., API, Washington, D.C.

American Petroleum Institute (2000), <u>Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms - Working Stress Design</u>, API Recommended Practice 2A-WSD (RP 2A-WSD), 21st Ed., December 2000, API, Washington, D.C.

American Society for Testing and Materials (2008), "Soil and Rock," <u>Annual Book of ASTM Standards</u>, Vol. 4.08 and 4.09, ASTM, West Conshohocken, Pennsylvania.

Dennis, N.D. and Olson, R.E. (1983), "Axial Capacity of Steel Pipe Piles in Clay," <u>Proceedings of the Conference on Geotechnical Practice in Offshore Engineering</u>, Austin, April, pp. 370-388.

Fugro Geoservices, Inc. (2008), <u>Archaeological and Hazard Survey Blocks A36 and A37 Galveston Area</u>, Report No. .2407-1298.

Matlock, H. (1970), "Correlations for Design of Laterally Loaded Piles in Soft Clay," <u>Proceedings, 2nd Offshore Technology Conference</u>, Houston, Vol. 1, pp. 577-594.

Matlock, H., Meyer, P.L., and Holmquist, D.V. (1976), "A Program for Discrete-Element Solution of Axially Loaded Members with Linear or Nonlinear Supports," A Report to the American Petroleum Institute, University of Texas at Austin, Department of Civil Engineering, March.

O'Neill, M.W. and Murchison, J.M. (1983), "An Evaluation of p-y Relationships in Sands," Report PRAC 82-41-1, Prepared for the American Petroleum Institute, Houston, May.

Quiros, G.W., Young, A.G., Pelletier, J.H., and Chan, J.H-C. (1983), "Shear Strength Interpretation for Gulf of Mexico Clays," <u>Proceedings of the Conference on Geotechnical Practice in Offshore Engineering</u>, Austin, April, pp. 144-165.

Reese, L.C. (1964), "Load vs Settlement of an Axially Loaded Pile," <u>Proceedings, Symposium on Bearing Capacity of Piles</u>, Roorkee, India.

Skempton, A.W. (1951), "The Bearing Capacity of Clays," Proceedings, Building Research Congress, Institute of Civil Engineers, London, pp. 180-183.

	Tim	<u>ie</u>	
<u>Date</u>	<u>From</u>	<u>To</u>	Description of Activities
June 27, 2008	***	0750	Arrive in Block A-36, Galveston Area, SPM #1 PLET location aboard the R/V Seaprobe.
	0750	1250	Wait on weather. (Seas: 4-6/7 ft; Winds: SSE15-20 mph).
	***	1130	Conduct pre-shift safety and weekly HSE meetings (afternoon shift).
	***	1230	Conduct weekly HSE meeting (morning shift).
	1250	1410	Set 4-point anchor spread.
	1410	1515	Perform scanning sonar survey.
	1515	1530	Rig up to drill and sample.
	****	1530	Estimate water depth of 107 ft using echo sounder and 110 ft using wireline technique.
	1530	1630	Run drill pipe to mudline.
	****	1630	Measure water depth of 112 ft using pipe tally/bottom sensor and 110.8 ft using pressure transducer.
	1630	2210	Drill and sample. Boring terminated at 131-ft penetration.
	2210	2245	Pull drill pipe above mudline and reposition vessel.
	****	2245	Measure supplemental water depth of 113 ft using bottom sensor/pipe tally and 111.2 ft using pressure transducer.
	2245	2315	Pull drill pipe to deck and secure equipment for travel.
	2315	2400	Pull anchors.
	***	2345	Conduct pre-shift safety meeting.
June 28, 2008	0000	0015	Pull anchors.
	0015	***	Depart location.

SUMMARY OF FIELD OPERATIONS

Texas Offshore Port System, SPM #1 PLET Block A-36, Galveston Area

PLATE A-1

Summary of Test Results

Job No.: 0201-6501-2

02-Sep-2008 (Ver. #6)

Boring: Texas Offshore Port System, SPM #1 PLET

Block: A-36

Area: Galveston

				Identifi	cation T	Tests	1	Strength E		Miniat	ire Vane	Tests				Con	pressio	n Test	s		
Sample No.	Depth (ft)	Liquidity Index	Liquid Limit (%)	Plastic Limit (%)	Moisture Content (%)	Submerged Unit Weight (pcf)	Passing No. 200 Sieve (%)	(ks		Undisturbed	(ksf)	Residual	Type Test	Moisture Content (%)	Confining Pressure (psi)	Undisturbed Strength (ksf)	Remolded Strength (ksf)	E 50 Strain (%)	Submerged Unit Weight (pcf)	Failure Strain (%)	Type of Failure
1	0.50					41														-	
2	1.00					44															
3	1.50					50															
4	2.00	1.06	38	12	39																
4	2.00				35					0.20		0.10	Ш							-	-
4	2.00				42						0.07		\sqcup				-	-		-	
5	3.50					51				0.19									<u></u>		
6	4.30										0.09								 	 	
6	4.30	1.06	33	13	34								_							-	
6	4.30				42	56				0.15							-	-		├	
7	7.00				23	62	65								*			-		-	
8	10.00				24	62	68											-	-	-	-
9	14.00				27	58	70						-		-			-	-	-	-
10	17.00				27	57	62						_		<u> </u>		-	-		+	-
11	19.30				27	58	71				1		├				-	-	-	+	-
12	25.00				27	56	77								-		-	-	 -	+	\vdash
13	28.50					55					_		-		-	-	-	-	-	+-	-
14	29.30		<u> </u>		30	-	85						-	-	-	 	-	\vdash	-	+	-
14	29.30	1.50	27	19	31			-		-	-		 		405	0.55	-	0.7	E7	10	A
15	34.00						ļ		0.58		790-179-		UU	29	120	0.55		2.7	57	19	+~
16	34.50		_					-			0.17	-	-		10	0.07	-	20	54	14	A
16	34.50												บบ	32	40	0.27		3.0			

NOTES:

TYPE OF TEST

U - Unconfined Compression

UU- Unconsolidated-Undrained Triaxial

CU- Consolidated-Undrained Triaxial

TYPE OF FAILURE

A - Buige

B - Single Shear Plane

C - Multiple Shear Plane

D - Vertical Fracture

Plus Signs [+] denote tests which exceeded the capacity of the measuring device.

Approved By:

Summary of Test Results

Job No.: 0201-6501-2

02-Sep-2008 (Ver. #6)

Boring: Texas Offshore Port System, SPM #1 PLET

Block: A-36

Area: Galveston

				ldentifi	ication 1	Tests		Strength I		Miniat	ure Vane	Tests				Con	pressio	n Test	s		
Sample No.	Depth (ft)	Liquidity Index	Liquid Limit (%)	Plastic Limit (%)	Moisture Content (%)	Submerged Unit Weight (pcf)	Passing No. 200 Sieve (%)	(ks	Torvane	Undisturbed	(ksf)	Residual	Type Test	Moisture Content (%)	Confining Pressure (psi)	Undisturbed Strength (ksf)	Remolded Strength (ksf)	E 50 Strain (%)	Submerged Unit Weight (pcf)	Failure Strain (%)	Type of Failure
17	35.00	.75	33	16	28				0.62	0.53						7					
18	38.50		-						0.94												
19	39.00					54															
20	39.50	.82	41	16	36																
20	39.50										0.20								ļ		
20	39.50				28				0.48	0.92											
21	44.30				30	54	17														
22	49.30				32	54	97											_			
23	53.50					52			s									_			
24	53.80				35				0.48	0.34								_			
24	53.80	1.16	29	20	31													_		<u> </u>	<u> </u>
25	54.30				29	59	49											<u> </u>			├
26	59.00								0.84				UU	37	60	0.60		3.2	51	12	A
26	59.00										0.21		-					_		-	-
27	59.50												-					-	-	-	
28	60.00	.70	41	18	34				0.94	0.79		1	_							-	-
29	63.50								0.88										ļ		
30	64.00					53							-						-	-	
31	64.50	1.23	33	17	37								<u> </u>					-	 		┼
31	64.50				34				0.96	1.19	1		_		-	-		+-	-	-	_
32	67.00								1.12				_					-		Spea	
33	67.50	D								8			UU	45	123	0.56	<u> </u>	2.9	50	14	AB

NOTES:

TYPE OF TEST

U - Unconfined Compression

UU- Unconsolidated-Undrained Triaxial

CU- Consolidated-Undrained Triaxial

TYPE OF FAILURE

A - Bulge

B - Single Shear Plane

C - Multiple Shear Plane

D - Vertical Fracture

Plus Signs [+] denote tests which exceeded the capacity of the measuring device.

Summary of Test Results

Date: 9/2/08 Date: 9/2/2

Date: 9/2/08 Drawn By: Torus

Job No.: 0201-6501-2

02-Sep-2008 (Ver. #6)

Boring: Texas Offshore Port System, SPM #1 PLET

Block: A-36

Area: Galveston

			Identification Tests			(kef)							Miniat		Tests				Con	pressio	n Test	s		
Sample No.	Depth (ft)	Liquidity Index	Liquid Limit (%)	Plastic Limit (%)	Moisture Content (%)	Submerged Unit Weight (pcf)	Passing No. 200 Sieve (%)	Penetrometer	Torvane	Undisturbed	,	Residual	Type Test	Moisture Content (%)	Confining Pressure (psi)	Undisturbed Strength (ksf)	Remolded Strength (ksf)	E 50 Strain (%)	Submerged Unit Weight (pcf)	Failure Strain (%)	Type of Failure			
33	67.50										0.32													
34	68.00	.38	55	17	32			1.25	1.34	1.56			8		1)*									
35	78.00							1.50	1.50															
36	78.50				0								υυ		119		0.55		50					
36	78.50												UU	45	122	1.25		2.5	51	7	AC			
37	79.00				41			1.75	1.80	2.29														
38	88.00			100				1.50	1.85												_			
39	88.50					48		1.50	2.00				υυ	41	120		0.50		48		<u> </u>			
39	88.50												UU	42	120	1.60		1.1	50	4	AB			
40	89.00				38					1.93														
40	89.00	.59	55	17	39																			
41	98.00							1.75	2.00									_			-			
42	98.50							1.50	1.85				UU		122		0.63	_	48	<u> </u>				
42	98.50												UU	37	122	1.07		0.7	46	4	С			
43	99.00)			34					1.89								_		-				
44	107.50							1.75	1.85				_					_			-			
45	108.00					47		1.75	2.00				UU	42	120	2.14		0.8	45	3	В			
46	108.30				40					2.32											₩			
46	108.30	.80	49	15	42								_								+			
47	118.00							2.00	2.00		1		_		1			_			-			
48	118.50							2.00	2.15				υu	48	121	1.23		0.5	43	3	В			
48	118.50				ì								UU		121		0.71		45		1			

NOTES:

TYPE OF TEST

U - Unconfined Compression

UU- Unconsolidated-Undrained Triaxial

CU- Consolidated-Undrained Triaxial

TYPE OF FAILURE

A - Bulge

B - Single Shear Plane

C - Multiple Shear Plane

D - Vertical Fracture

Plus Signs [+] denote tests which exceeded the capacity of the measuring device.

Date: 9/2/08 Date: 9/2/4

Drawn By: Tlomol Date: 9/2/08

Checked By: 13 Approved By: DC

Summary of Test Results Summary of Test Results Boring: Texas Offshore Port System, SPM #1 PLET Block: A-36 Area: Galveston									08 (Ver.#	# 6)											
	Identification Tests						Strength Estimate N		Miniat	Miniature Vane Tests (ksf)		Compression Tests									
Sample No.	Depth (ft)	Liquidity Index	Liquid Limit (%)	Plastic Limit (%)	Moisture Content (%)	Submerged Unit Weight (pcf)	Passing No. 200 Sieve (%)	Penetrometer	Torvane	Undisturbed		Residual	Type Test	Moisture Content (%)	Confining Pressure (psi)	Undisturbed Strength (ksf)	Remolded Strength (ksf)	E 50 Strain (%)	Submerged Unit Weight (pcf)	Failure Strain (%)	Type of Failure
49	119.00				47					2.13											
50	130.00						2	1.50	1.80												
51	130.50					53							บบ	30	120	1.90		0.6	59	3	AC
52	131.00				32			1.50	2.30	2.13										_	
52	131.00	.50	49	16	32																

NOTES:

TYPE OF TEST

U - Unconfined Compression

UU- Unconsolidated-Undrained Triaxial

CU- Consolidated-Undrained Triaxial

TYPE OF FAILURE

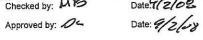
A - Bulge

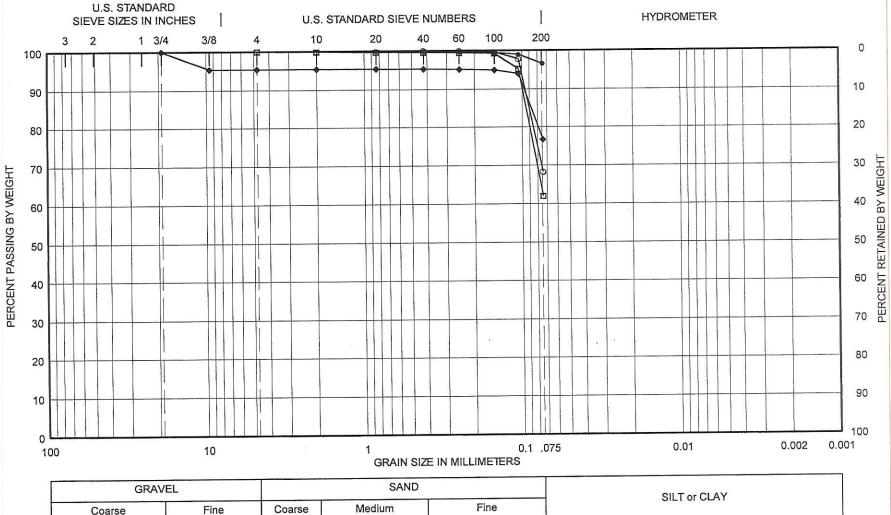
B - Single Shear Plane

C - Multiple Shear Plane

D - Vertical Fracture

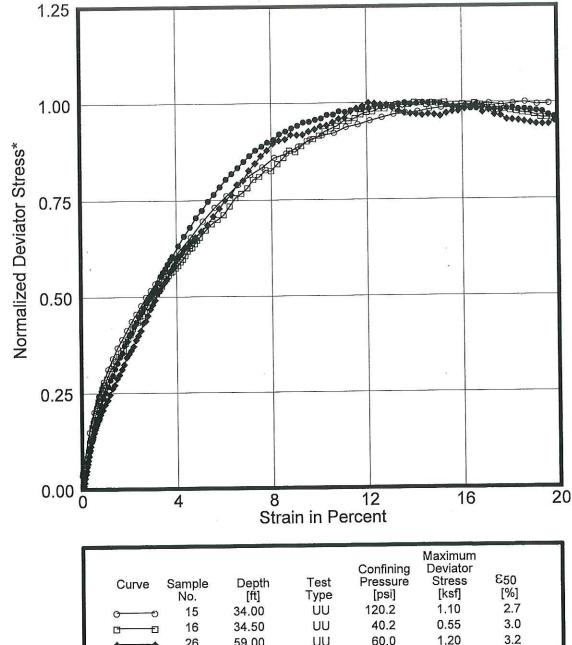
Plus Signs [+] denote tests which exceeded the capacity of the measuring device.


Checked by: 以后


Date:1/2/02

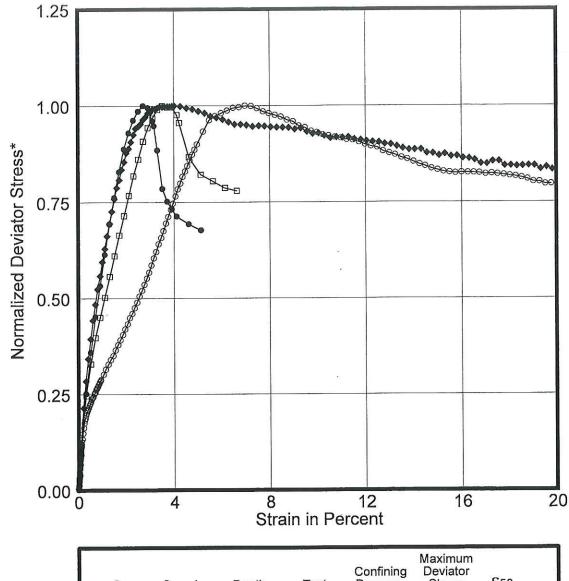
Drawn by: Tlomd

Date: 9/2/08



(GRAVEL		SAND		SILT or CLAY		
Coarse Fine		Coarse	Medium	Fine	SILT OF CLAT		
SAMPLE NO.	DEPTH, FT	SYMBOL	CLASSIFICATION	76.			
8	8 10.00 °		SANDY SILT (ML) with a				
10 17.00			SANDY SILT (ML) with a few clay pockets and shell fragments				
12 25.00		•	SILT (ML) with sand, a few clay pockets and shell fragments				
22 49.30 • SILT (ML) with a few clay pockets and				y pockets and partings	s and pockets oforganic matter		

GRAIN-SIZE DISTRIBUTION CURVES

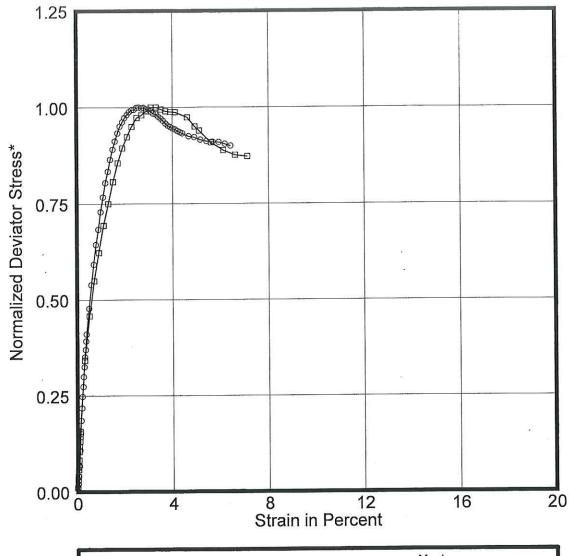


59.00 UU 60.0 1.20 26 2.9 122.5 1.11 67.50 UU 33

STRESS-STRAIN CURVES

Unconsolidated-Undrained Triaxial Compression Test

^{*} Normalized with respect to maximum deviator stress.


Curve	Sample No.	Depth [ft]	Test Type	Confining Pressure [psi]	Maximum Deviator Stress [ksf]	£50 [%]
00	36	78.50	UU	122.5	2.51	2.5
	39	88.50	UU	120.2	3.20	1.1
*	42	98.50	UU	122.5	2.14	0.7
•	45	108.00	UU	120.0	4.27	0.8

^{*} Normalized with respect to maximum deviator stress.

STRESS-STRAIN CURVES

Unconsolidated-Undrained Triaxial Compression Test

Curve	Sample No.	Depth [ft]	Test Type	Confining Pressure [psi]	Maximum Deviator Stress [ksf]	850 [%]
0 0	48	118.50	UU	121.2	2.46	0.5
<u> </u>	51	130.50	UU	120.1	3.79	0.6

^{*} Normalized with respect to maximum deviator stress.

STRESS-STRAIN CURVES Unconsolidated-Undrained Triaxial Compression Test

CORE 3 (PLET #1)

Y = 265,270.45' X = 3,276,615.21'

Latitude: 28° 30' 11.583" N Longitude: 95° 01' 28.676" W

This location being 3910.45' FSL and 6739.40' FWL of Block A36, Galveston Area

CORE 4 (PLET #2)

Y = 269,117.95' X = 3,283,617.17'

Latitude: 28° 30' 47.295" N Longitude: 95° 00' 08.769" W

This location being 7757.95' FSL and 2098.64' FEL of Block A36, Galveston Area

CORE 4A (PLET #2 - Amended)

Y = 269,121.01' X = 3,283,587.30'

Latitude: 28° 30' 47.335" N Longitude: 95° 00' 09.102" W

This location being 7761.01' FSL and 2128.51' FEL of Block A36, Galveston Area

6. CONFIRMATION:

DGPS was used for confirmation.

The results were as follows:

CORE 1 (Leg <u>#2 - West)</u>	CORE 2 (Leg #6 - <u>East)</u>	CORE 3 (PLET #1)
Y = 264,853' X = 3,275,181'	Y = 270,117' X = 3,284,733'	Y = 265,271' X = 3,276,615'
CORE 4 (PLET #2)	CORE 4A (PLET #2 - Amend	ded)

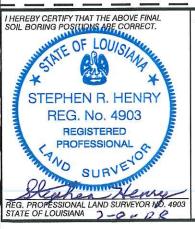
$$Y = 269,118'$$
 $Y = 269,121'$ $X = 3,283,617'$ $X = 3,283,588'$

7. HSE INCIDENTS:

No incidents.

FINAL SOIL BORINGS									
LOCATION	CALLNS	CALLEW	X COORDINATE	Y COORDINATE	LATITUDE	LONGITUDE			
CORE 1	3,493,21' FSL	5,304.63' FWL	3,275,180.44	264,853.21'	28' 30' 07.937"N				
CORE 2	7,083.00' FNL	982.63' FEL	3,284,733.18	270,117.00'	28' 30' 56.803"N	94° 59' 55.883"W			
CORE 3	3,910.45' FSL	6,739,40' FWL	3,276,615.21	265,270.45'	28' 30' 11.583"N	95' 01' 28.676"W			
CORE 4	7,757.95' FSL	2,098.64' FEL	3,283,617.17	269,117.95'	28' 30' 47.295"N	95' 00' 08.769"W			
CORE 4A	7.761.01' FSL	2,128.51' FEL	3,283,587.30'	269,121.01	28' 30' 47.335"N	95' 00' 09.102"W			

O CORE 2


GAA36

CORE 4A CORE 4

O CORE 3

O CORE 1

GRID

1) SURVEYED COORDINATES TRANSFORMED FROM NADBS (GPS DATUM) TO NAD27 (CHART DATUM) USING NADCON VERSION 2.1.

ENTERPRISE FIELD SERVICES, LLC

FINAL SOIL BORINGS (PROP. ANC & PLET) **NO LEASE NUMBER**

> **BLOCK A36 GALVESTON AREA GULF OF MEXICO**

FUGRO CHANCE INC. 200 Dulles Dr. Lafqyelle, Leuisione 70506-3001 (337) 237-1300

fueno

2,000

Of:

GEODETIC DATUM: NAD27 SCALE PROJECTION: TEXAS SOUTH CENTRAL GRID UNITS: US SURVEY FEET IN FEET

Job No.: 08-01930 | Date: 7/8/08 Chart: Drwn: TCG

Printed: 7/8/08 Dwgfile: O:\WellPermit\TXsc\GA\Permit\A36_CORE_NoLease_0801930